

avocado_i2n

	avocado_i2n package
	Subpackages
	avocado_i2n.cartgraph package
	Submodules

	Module contents

	avocado_i2n.plugins package
	Submodules

	Module contents

	avocado_i2n.states package
	Submodules

	Module contents

	avocado_i2n.vmnet package
	Submodules

	Module contents

	Submodules
	avocado_i2n.cmd_parser module

	avocado_i2n.intertest_setup module

	avocado_i2n.loader module

	avocado_i2n.params_parser module
	SUMMARY

	INTERFACE

	avocado_i2n.runner module

	Module contents

avocado_i2n package

Subpackages

	avocado_i2n.cartgraph package
	Submodules
	avocado_i2n.cartgraph.graph module

	avocado_i2n.cartgraph.node module

	avocado_i2n.cartgraph.object module
	SUMMARY

	INTERFACE

	Module contents

	avocado_i2n.plugins package
	Submodules
	avocado_i2n.plugins.auto module

	avocado_i2n.plugins.manu module

	avocado_i2n.plugins.settings module

	Module contents

	avocado_i2n.states package
	Submodules
	avocado_i2n.states.btrfs module

	avocado_i2n.states.lvm module

	avocado_i2n.states.lxc module

	avocado_i2n.states.pool module

	avocado_i2n.states.qcow2 module

	avocado_i2n.states.ramfile module

	avocado_i2n.states.setup module

	avocado_i2n.states.vmnet module

	Module contents

	avocado_i2n.vmnet package
	Submodules
	avocado_i2n.vmnet.interface module

	avocado_i2n.vmnet.netconfig module

	avocado_i2n.vmnet.network module

	avocado_i2n.vmnet.node module

	avocado_i2n.vmnet.tunnel module

	Module contents

Submodules

	avocado_i2n.cmd_parser module

	avocado_i2n.intertest_setup module

	avocado_i2n.loader module

	avocado_i2n.params_parser module
	SUMMARY

	INTERFACE

	avocado_i2n.runner module

Module contents

avocado_i2n.cartgraph package

Submodules

	avocado_i2n.cartgraph.graph module

	avocado_i2n.cartgraph.node module

	avocado_i2n.cartgraph.object module
	SUMMARY

	INTERFACE

Module contents

avocado_i2n.cartgraph.graph module

avocado_i2n.cartgraph.node module

avocado_i2n.cartgraph.object module

SUMMARY

Utility for the main test suite substructures like test objects.

Copyright: Intra2net AG

INTERFACE

	
class avocado_i2n.cartgraph.object.TestObject(suffix, config)

	Bases: object

A wrapper for a test object used in one or more test nodes.

	
params

	Parameters (cache) property.

	
final_restr

	Final restriction to make the object parsing variant unique.

	
long_suffix

	Sufficiently unique suffix to identify a variantless test object.

	
id

	Unique ID to identify a test object.

	
__init__(suffix, config)

	Construct a test object (vm) for any test nodes (tests).

	Parameters

	
	name (str) – name of the test object

	config (param.Reparsable) – variant configuration for the test object

	
__repr__()

	Return repr(self).

	
is_permanent()

	If the test object is permanent, it can only be created manually
(possibly through the use of manual setup steps).

On states on permanent test object are treated differently than
on states on normal test object since they are preserved through
test runs and even host shutdowns.

	
object_typed_params(params)

	Return object and type filtered parameters using the current object type.

	Parameters

	params (param_utils.Params) – whether to show generated parameter dictionaries

	
regenerate_params(verbose=False)

	Regenerate all parameters from the current reparsable config.

	Parameters

	verbose (bool) – whether to show generated parameter dictionaries

	
class avocado_i2n.cartgraph.object.NetObject(name, config)

	Bases: avocado_i2n.cartgraph.object.TestObject

A Net wrapper for a test object used in one or more test nodes.

	
__init__(name, config)

	Construct a test object (vm) for any test nodes (tests).

All arguments are inherited from the base class.

	
class avocado_i2n.cartgraph.object.VMObject(name, config)

	Bases: avocado_i2n.cartgraph.object.TestObject

A VM wrapper for a test object used in one or more test nodes.

	
__init__(name, config)

	Construct a test object (vm) for any test nodes (tests).

All arguments are inherited from the base class.

	
class avocado_i2n.cartgraph.object.ImageObject(name, config)

	Bases: avocado_i2n.cartgraph.object.TestObject

An image wrapper for a test object used in one or more test nodes.

	
id

	Sufficiently unique ID to identify a test object.

	
__init__(name, config)

	Construct a test object (vm) for any test nodes (tests).

All arguments are inherited from the base class.

avocado_i2n.plugins package

Submodules

	avocado_i2n.plugins.auto module

	avocado_i2n.plugins.manu module

	avocado_i2n.plugins.settings module

Module contents

avocado_i2n.plugins.auto module

avocado_i2n.plugins.manu module

avocado_i2n.plugins.settings module

Avocado plugin that extends the settings path of our config paths.

	
class avocado_i2n.plugins.settings.I2NSettings

	Bases: avocado.core.plugin_interfaces.Settings

	
adjust_settings_paths(paths)

	Entry point where plugin can modify the list of configuration paths.

	
__abstractmethods__ = frozenset()

	

avocado_i2n.states package

Submodules

	avocado_i2n.states.btrfs module

	avocado_i2n.states.lvm module

	avocado_i2n.states.lxc module

	avocado_i2n.states.pool module

	avocado_i2n.states.qcow2 module

	avocado_i2n.states.ramfile module

	avocado_i2n.states.setup module

	avocado_i2n.states.vmnet module

Module contents

avocado_i2n.states.btrfs module

avocado_i2n.states.lvm module

avocado_i2n.states.lxc module

avocado_i2n.states.pool module

avocado_i2n.states.qcow2 module

avocado_i2n.states.ramfile module

avocado_i2n.states.setup module

avocado_i2n.states.vmnet module

avocado_i2n.vmnet package

Submodules

	avocado_i2n.vmnet.interface module

	avocado_i2n.vmnet.netconfig module

	avocado_i2n.vmnet.network module

	avocado_i2n.vmnet.node module

	avocado_i2n.vmnet.tunnel module

Module contents

avocado_i2n.vmnet.interface module

avocado_i2n.vmnet.netconfig module

avocado_i2n.vmnet.network module

avocado_i2n.vmnet.node module

avocado_i2n.vmnet.tunnel module

avocado_i2n.cmd_parser module

avocado_i2n.intertest_setup module

avocado_i2n.loader module

avocado_i2n.params_parser module

SUMMARY

Module for handling all Cartesian config parsing and
making it reusable and maximally performant.

Copyright: Intra2net AG

INTERFACE

	
exception avocado_i2n.params_parser.EmptyCartesianProduct(message)

	Bases: Exception

Empty Cartesian product of variants

	
__init__(message)

	Initialize an empty Cartesian product exception.

	Parameters

	message (str) – additional message about the exception

	
avocado_i2n.params_parser.custom_configs_dir()

	Custom directory for all config files.

	
avocado_i2n.params_parser.tests_ovrwrt_file()

	Overwrite config file for all tests (nodes).

	
avocado_i2n.params_parser.vms_ovrwrt_file()

	Overwrite config file for all vms (objects).

	
class avocado_i2n.params_parser.ParsedContent(content)

	Bases: object

Class for parsed content of a general type.

	
__init__(content)

	Initialize the parsed content.

	
reportable_form()

	Parsed content representation used in reports of parsing steps.

	Returns

	resulting report-compatible string

	Return type

	str

	Raises

	NotImlementedError as this is an abstract method

	
parsable_form()

	Convert parameter content into parsable string.

	Returns

	resulting parsable string

	Return type

	str

	Raises

	NotImlementedError as this is an abstract method

	
class avocado_i2n.params_parser.ParsedFile(content)

	Bases: avocado_i2n.params_parser.ParsedContent

Class for parsed content of file type.

	
__init__(content)

	Initialize the parsed content.

	
reportable_form()

	Parsed file representation used in reports of parsing steps.

Arguments are identical to the ones of the parent class.

	
parsable_form()

	Convert parameter file name into parsable string.

	Returns

	resulting parsable string

	Return type

	str

	
class avocado_i2n.params_parser.ParsedStr(content)

	Bases: avocado_i2n.params_parser.ParsedContent

Class for parsed content of string type.

	
reportable_form()

	Parsed string representation used in reports of parsing steps.

Arguments are identical to the ones of the parent class.

	
parsable_form()

	Convert parameter string into parsable string.

	Returns

	resulting parsable string

	Return type

	str

This is equivalent to the string since the string
is parsable by definition.

	
class avocado_i2n.params_parser.ParsedDict(content)

	Bases: avocado_i2n.params_parser.ParsedContent

Class for parsed content of dictionary type.

	
reportable_form()

	Parsed dictionary representation used in reports of parsing steps.

Arguments are identical to the ones of the parent class.

	
parsable_form()

	Convert parameter dictionary into parsable string.

	Returns

	resulting parsable string

	Return type

	str

	
class avocado_i2n.params_parser.Reparsable

	Bases: object

Class to represent quickly parsable Cartesian configuration,
producing both parser and parameters (parser dicts) on demand.

	
__init__()

	Initialize the parsable structure.

	
parse_next_file(pfile)

	Add a file parsing step.

	Parameters

	pfile (str) – file to be parsed next

If the parsable file has a relative form (not and absolute path), it
will be searched in the relative test suite config directory.

	
parse_next_str(pstring)

	Add a string parsing step.

	Parameters

	pstring (str) – string to be parsed next

	
parse_next_dict(pdict)

	Add a dictionary parsing step.

	Parameters

	pdict ({str, str}) – dictionary to be parsed next

	
parse_next_batch(base_file=None, base_str='', base_dict=None, ovrwrt_file=None, ovrwrt_str='', ovrwrt_dict=None)

	Parse a batch of base file, string, and dictionary, and possibly an
overwrite file (with custom parameters at the user’s home location).

	Parameters

	
	base_file (str or None) – file to be parsed first

	base_str (str or None) – string to be parsed first

	base_dict ({str, str} or None) – params to be added first

	ovrwrt_file (str or None) – file to be parsed last

	ovrwrt_str (str or None) – string to be parsed last

	ovrwrt_dict ({str, str} or None) – params to be added last

The priority of the setting follows the order of the arguments:
Dictionary with some parameters is topmost, string with some
parameters is next and the file with parameters is taken as a base.
The overwriting version is taken last, the base version first.

	
print_parsed()

	Return printable information about what was parsed so far.

	Returns

	structured text of the base/ovrwrt file/str/dict parse steps

	Return type

	str

	
avocado_i2n.params_parser.all_restrictions()

	Return all restrictions that can be passed for any test configuration.

	Returns

	all available (from configuration) vms

	Return type

	[str]

	
avocado_i2n.params_parser.all_objects(key='vms', composites=None)

	Return all test objects that can be passed for any test configuration.

	Param

	str key: key to extract parametric objects from

	Parameters

	composites ([str]) – composite restriction of the returned objects

	Returns

	all available (from configuration) objects of a given type

	Return type

	[str]

	
avocado_i2n.params_parser.main_vm()

	Return the default main vm that can be passed for any test configuration.

	Returns

	main available (from configuration) vm

	Return type

	str or None

	
avocado_i2n.params_parser.re_str(variant_str, base_str='', tag='')

	Add a variant restriction to the base string, optionally
adding a custom tag as well.

	Parameters

	
	variant_str (str) – variant restriction

	base_str (str) – string where the variant restriction will be added

	tag (str) – additional tag to the variant combination

	Returns

	restricted parameter string

	Return type

	str

	
avocado_i2n.params_parser.join_str(variant_strs, base_str='')

	Join all object variant restrictions over the base string.

	Parameters

	
	variant_strs ({str, str}) – variant restrictions for each object as key, value pair

	base_str (str) – string where the variant restriction will be added

	Returns

	restricted parameter string

	Return type

	str

avocado_i2n.runner module

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 avocado_i2n	

 	
 	
 avocado_i2n.cartgraph.object	

 	
 	
 avocado_i2n.params_parser	

 	
 	
 avocado_i2n.plugins	

 	
 	
 avocado_i2n.plugins.settings	

 	
 	
 avocado_i2n.states	

Index

 _
 | A
 | C
 | E
 | F
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | T
 | V

_

 	
 	__abstractmethods__ (avocado_i2n.plugins.settings.I2NSettings attribute)

 	__init__() (avocado_i2n.cartgraph.object.ImageObject method)

 	(avocado_i2n.cartgraph.object.NetObject method)

 	(avocado_i2n.cartgraph.object.TestObject method)

 	(avocado_i2n.cartgraph.object.VMObject method)

 	(avocado_i2n.params_parser.EmptyCartesianProduct method)

 	(avocado_i2n.params_parser.ParsedContent method)

 	(avocado_i2n.params_parser.ParsedFile method)

 	(avocado_i2n.params_parser.Reparsable method)

 	
 	__repr__() (avocado_i2n.cartgraph.object.TestObject method)

A

 	
 	adjust_settings_paths() (avocado_i2n.plugins.settings.I2NSettings method)

 	all_objects() (in module avocado_i2n.params_parser)

 	all_restrictions() (in module avocado_i2n.params_parser)

 	avocado_i2n (module)

 	
 	avocado_i2n.cartgraph.object (module)

 	avocado_i2n.params_parser (module)

 	avocado_i2n.plugins (module)

 	avocado_i2n.plugins.settings (module)

 	avocado_i2n.states (module)

C

 	
 	custom_configs_dir() (in module avocado_i2n.params_parser)

E

 	
 	EmptyCartesianProduct

F

 	
 	final_restr (avocado_i2n.cartgraph.object.TestObject attribute)

I

 	
 	I2NSettings (class in avocado_i2n.plugins.settings)

 	id (avocado_i2n.cartgraph.object.ImageObject attribute)

 	(avocado_i2n.cartgraph.object.TestObject attribute)

 	
 	ImageObject (class in avocado_i2n.cartgraph.object)

 	is_permanent() (avocado_i2n.cartgraph.object.TestObject method)

J

 	
 	join_str() (in module avocado_i2n.params_parser)

L

 	
 	long_suffix (avocado_i2n.cartgraph.object.TestObject attribute)

M

 	
 	main_vm() (in module avocado_i2n.params_parser)

N

 	
 	NetObject (class in avocado_i2n.cartgraph.object)

O

 	
 	object_typed_params() (avocado_i2n.cartgraph.object.TestObject method)

P

 	
 	params (avocado_i2n.cartgraph.object.TestObject attribute)

 	parsable_form() (avocado_i2n.params_parser.ParsedContent method)

 	(avocado_i2n.params_parser.ParsedDict method)

 	(avocado_i2n.params_parser.ParsedFile method)

 	(avocado_i2n.params_parser.ParsedStr method)

 	parse_next_batch() (avocado_i2n.params_parser.Reparsable method)

 	parse_next_dict() (avocado_i2n.params_parser.Reparsable method)

 	
 	parse_next_file() (avocado_i2n.params_parser.Reparsable method)

 	parse_next_str() (avocado_i2n.params_parser.Reparsable method)

 	ParsedContent (class in avocado_i2n.params_parser)

 	ParsedDict (class in avocado_i2n.params_parser)

 	ParsedFile (class in avocado_i2n.params_parser)

 	ParsedStr (class in avocado_i2n.params_parser)

 	print_parsed() (avocado_i2n.params_parser.Reparsable method)

R

 	
 	re_str() (in module avocado_i2n.params_parser)

 	regenerate_params() (avocado_i2n.cartgraph.object.TestObject method)

 	Reparsable (class in avocado_i2n.params_parser)

 	
 	reportable_form() (avocado_i2n.params_parser.ParsedContent method)

 	(avocado_i2n.params_parser.ParsedDict method)

 	(avocado_i2n.params_parser.ParsedFile method)

 	(avocado_i2n.params_parser.ParsedStr method)

T

 	
 	TestObject (class in avocado_i2n.cartgraph.object)

 	
 	tests_ovrwrt_file() (in module avocado_i2n.params_parser)

V

 	
 	VMObject (class in avocado_i2n.cartgraph.object)

 	
 	vms_ovrwrt_file() (in module avocado_i2n.params_parser)

avocado-i2n

Plugins for avocado extending avocado-vt with automated vm state setup,
inheritance, and traversal

[image: Build Status] [https://travis-ci.org/intra2net/avocado-i2n] [image: Documentation Status] [https://avocado-i2n.readthedocs.io/en/latest/?badge=latest] [image: Language grade: Python] [https://lgtm.com/projects/g/intra2net/avocado-i2n/context:python] [image: codecov] [https://codecov.io/gh/intra2net/avocado-i2n]

This file provides a brief overview of the core concepts behind the
current plugin and hopefully a compact explanation of how tests are
being run.

Motivation and background

The two milestones and guiding principles for a test running process
are:

	test thoroughness - how to test a maximum number of features with a
minimal set of configuration parameters and code

	test reusability - how to be reuse a maximum number of overlapping
steps which offers greater performance gain with the thoroughness

The first is the code/configuration reuse, while the second is the
run/execution reuse. Combining optimally extensive testing of
automatically generated variety of scenarios with minimum setup overhead
(minimal duration) is the guiding principle for large scale testing. The
first of these is well handled by Cartesian configuration - producing a
large number of scenarios and configurations from a minimal, compact,
and easy to read set of definitions, also allowing to reuse test code
for multiple variants and thus use cases. The second guiding principle
is the reason for the development of this plugin.

In classical test suites using the avocado-framework and the avocado-vt
plugin, most of the setup is performed at the beginning or within tests
regardless of what tests are to be performed. This has serious
disadvantages since enormous time is spent preparing for all
possibilities if only a small and simple test is desired. In order to
save setup penalty, a lot of smaller actual tests are put into larger
ones (e.g. test for feature B while testing for feature A because the
setup of feature A is available and/or very similar to that of B). In
this way the setup’s benefits are available but are also artificially
extended as the tests could be simpler and better isolated. Increasing
isolation always has the cost of redundant setup. In this case, the
setup that is automatically performed before a test is minimized only to
the setup (and respectively cleanup) specific to the demands of each
selected test. To achieve the better isolation, setup is now shared
among tests so that it needs to be performed only once and then shared
by all tests. The trick to do this while keeping the tests isolated and
clean is the usage of states.

The granularity of states follows test objects which in our case
represent virtual machines. All tests use one or more test objects and
are able to retrieve or store states of these objects. Recalling the
same previously saved state from multiple tests is then a way of saving
time from all of them, essentially running another test only once to
bring the object to this state and save it. This offers both better
isolation and more reusable steps. The test creating the state is also a
test since it tests the “more basic” steps of reaching this state. Tests
using the same state are then dependent on the first test and can be
aborted if the first test fails. Test unique setup steps should thus be
integrated into the tests while setup steps that are used by more than
one test should be turned into test nodes themselves. Since some tests
use entire networks of virtual machines, they use multiple objects at
different states. And as the states are also interdependent, reusing the
right states at the right time is not a trivial task and uses a special
structure and traversing algorithm.

Cartesian trees

The interconnected states of each test object represent a tree data
structure with a single root state, the creation of the object. The
basic setup thus includes creation of the minimum required virtual
machines and taking snapshots of their respective states afterwards
(non-root states). At every step to a deeper level, another snapshot has
to be taken and at going back up it could either be removed or kept for
future test runs. The latter option has many advantages as it allows for
interrupted runs to keep previous progress and for splitting a test run
into multiple shorter runs without significant performance penalty.
However, the origin of tests starts from the Cartesian configuration.

	Parsing from a Cartesian configuration to create a test node

The testing performed in a test suite is much more extensive because of
the Cartesian multiplication of the test variants. Defining just a few
alternatives for two parameters leads to a large set of possible
combinations of these alternatives and therefore tests. As a result, for
a very extensive scenario where every step is combined in such a way, it
would take far too long to perform setup such as installing a virtual
machine every time for every different detail. This is the reason for
defining the used objects and their state transitions as parameters
directly in the Cartesian configuration. All tests as well as the
objects they use and the states they require or create are then parsed
straight from there.

	Connecting the test node to all test nodes it depends on and to all
test nodes that depend on it

Once extracted, each required object state relates to a test that
provides it. This rule is used to connect all tests based on the object
trees or simply to interconnect the trees in a directed graph. Each test
node contains a set of parents (inwards connections from other tests)
and can only be run if all the parents were run using the setup
definition (of course it can also abort or ignore the missing setup
depending on a user defined policy). It then also contains a set of
children (outwards connections to other tests) where a DFS traversal
rule guarantees that the setup gain from running a child test will not
be lost but used until possible. The connection to/from another test
node might be based on one or multiple provided/required objects.

	Running all interconnected tests in a way that should minimize the
precious time lost by repeating test setup

While the structure might seem not that complex in the end, the
algorithm used to optimize the setup, i.e. traverse that structure so
that the number of repetitions of each setup tests are minimized is way
more fun. Unfortunately, it is not possible to guarantee that a setup
should be performed only once because of the sheer complexity of the
dependencies but practically it should be the case if you keep
dependencies simple. A complication arises from the fact that some
states might run out of memory to store the differences from the current
object state and that some tests should play the role of setup tests but
are rather short-lived, i.e. cannot be reused if they are not constantly
retrieved. For the sake of keeping this text compact, we will avoid
giving the details but strongly recommending checking the source code of
the Cartesian graph data structure for anyone that want to have fun with
forward and backward DFS, the symmetrical pruning, and the reversing
traversal path.

Image, VM, and network states; normal and permanent vms

The sample test suite supports three types of stateful objects,
i.e. test objects with reusable state setup: images, vms, and networks.
The image states can be managed using different state backends like
QCOW2, LVM, among others and esentially can store and retrieve previous
states of one or more VM images. The VM states contain the image as well
as RAM states and are thus states of an entire running VM and all its
images managed by backends like QCOW2VT (Qemu monitor usage through
Avocado VT) and Ramfile. Finally, the network states are currently only
managed by the VMNet state backend relying on the general VMNet
subpackage and all the networking management it provides.

For some comparison between VM and image states: the VM states are
faster since they involve running VM-s without an extra boot or shutdown
but image states are more granular and more appropriate for VMs using
RAID1 or other multi-image setup. For comparison among state backends,
QCOW2 snapshots are easier to manage and share since they involve simple
transfer of QCOW2 files while LVM is more rigid and not perfectly
isolated for containerization (this eventually harder to parallelize)
but could be even faster if managed on top of RAM for maximum speedup.
LVM could also have more difficult to debug errors on unclean process
interruptions. QCOW2VT might not support some cases of states like ones
using pflash drives while the Ramfile backend is generally unstable. In
the end all state backends have different limitations with the major
ones outlined so far.

A final additional concept to consider for test running is that of
permanent vms. For a test requiring vms with highly sophisticated
preparation sequences that sometimes might be only semi-automatable or
requiring strictly human input it might be more preferable to add an
external vm that could for instance only be manipulated via states
derived from a single starting state (thus without interfering with the
original setup) or a few manually created starting states. Such a
permanent vm might just be brought from outside to participate in the
test suite orchestration or it could be at least partially prepared
in-house using the test suite toolset through an extra tool development.
More information about it can be found in the test development
documentation.

How to install

In terms of installation, you may proceed analogically to other avocado
plugins. One quick way is using PyPI:

pip install avocado-framework-plugin-i2n

How to run

In order to list a test set from the sample test suite, do

avocado list --loaders cartesian_graph[-- "K1=V1[K2=V2[...]]"]
avocado list --loaders cartesian_graph -- "only=tutorial2 no=files"

In order to run a test set from the sample test suite, do

avocado run --auto --loaders cartesian_graph[-- "K1=V1[K2=V2[...]]"]
avocado run --auto --loaders cartesian_graph -- "only=tutorial1 file_contents=testing"

In order to run a manual step in the sample test suite, do

avocado manu["K1=V1[K2=V2[...]]"]
avocado manu setup=full,update vms=vm1

where any further overwriting parameters can be provided on the command
line. In order to initate dry runs for instance you can use
dry_run=yes.

Tool options

The auto plugin is a an instance of a manual run step from the manu
plugin where the following statements are equivalent

avocado run --auto --loaders cartesian_graph -- "only=tutorial1 file_contents=testing"
avocado manu setup=run only=tutorial1 file_contents=testing
avocado manu only=tutorial1 file_contents=testing

but using the manu plugin is preferable because of its simpler syntax as
well generalization to many other tools implemented as manual steps.
Thus, from here on we will only look at the manu plugin with default
option setup=run unless explicitly stated at the command line.

Note: Any call will use the default settings in objects.cfg for
the available vms and sets.cfg for the tests which should be present
in any test suite using the plugin (see sample test suite for details).
The main parameters of interest there and on the command line are
setup for manual test steps, only_vmX for vm/object restrictions,
and only for test/node restrictions.

OPTIONS:
[setup=setupchain]
[only_vmX=vmvariant]
[only=all|normal|minimal|...]
[get|set|unset_mode=XX]

The setup parameter will be used in the case of tool mode (manu
plugin) and the get/set/unset_mode parameter is mostly used in the
case of test mode (auto plugin). The choice of types of setup (manual
steps) is the following:

	noop - Simply load all plugins and do nothing (good for probing)

	create - Create any predefined image for each virtual machine

	collect - Collect the vm root state from a pool if available

	install - Prepare step files and install virtual machines

	deploy - Simply deploy changes on top of current state (will be
lost after reverting to snapshot)

	internal - Run a custom setup node without any automated setup

	boot - Simply boot the registered virtual machines and run selected
controls if any

	list - List selected tests

	run - Run selected tests

	download - Download a set of files from the vm to the test results
folder

	upload - Upload a set of files to the vm’s temporary folder

	unittest - Run all unit tests available for the test suite
utilities

	update - Redeploy tests on a vm, removing all descending states

	shutdown - Shutdown gracefully or kill living vms

	clean - Remove the logical volumes of all installed vms

	full - Create lvm image, install product, deploy tests and take a
clean snapshot

	check - Check whether a given state (snapshot of saved setup)
exists

	get - Get a given state, i.e. revert to it keeping it for further
reuse

	set - Set a given state, keeping it for further reuse

	unset - Unset a given state, making it unavailable for further
reuse but freeing space

	push - Same like setting a given state

	pop - Pop a given state, i.e. revert to it but making it
unavailable for further reuse

	<tool> - Run any custom compatible tool, located in the tools test
suite folder

You can define a chain of setup steps, e.g.

avocado manu setup=install,boot,deploy,run only=all

If you want to run tests at some point, you must include the run step
somewhere in the chain. Each setup performed after the run plays the
role of cleanup. You can run the tests multiple times with different
setup steps in between by adding multiple run steps throughout the
setup chain. As all other parameters, setup is not obligatory. If you
don’t use it on the command line a default value from your configs will
be selected. The additional but rarely used get, set, or unset mode
governs setup availability and defines the overall existing (first char
position) and missing (second char position) setup policy. The value
consists of two lowercase letters, each dot is one of ‘f’ (force), ‘i’
(ignore), ‘r’ (reuse), ‘a’ (abort) and carries a special meaning
according to its position - the first position determines the action of
choice if the setup is present and the second if the setup is missing.
Here is a brief description of each possible policies and action
combinations:

--
- - existing - non-existing -
--
- get_mode - ari - ai -
--
- set_mode - arf - af -
--
- unset_mode - rf - ai -
--

	get_mode:

	a. - Abort if a setup is present (get_state)

	r. - Reuse the present setup (get_state)

	i. - Ignore all existing setup (run without the get_state)

	.a - Abort if a setup is missing (get_state)

	.i - Ignore all missing setup (run without any setup although it
might be required)

	set_mode:

	a. - Abort if the set_state is already present (to avoid
overwriting previous setup)

	r. - Reuse the present set_state (ignore the results from the
test that was run)

	f. - Overwrite (recreate and save) all existing setup for
children (set_state)

	.a - Abort if the set_state is missing (if for example the
purpose was overwriting)

	.f - Create and save all missing setup for children (set_state)

	unset_mode:

	r. - Reuse the present unset_state for further test runs (don’t
cleanup the state here called “old”)

	f. - Remove the present unset_state (will be unavailable for
children in the next runs)

	.a - Abort if the state for cleanup is missing (cannot be
removed since not there)

	.i - Ignore if the state for cleanup is missing (cannot be
removed since not there)

A combination of defaults for all three policies would reuse all setup
left from previous runs determined by the set of tests you want to run.
Automatic setup can only be performed if and where you have defined
run for the manual setup. Since the default manual setup is run,
simply omitting the setup parameter at the command line will suffice for
performing the automatic setup for most cases. A scenario to appreciate
automated setup steps is the following:

avocado manu setup=full vms=vm1,vm2
avocado manu only=tutorial2..files
avocado manu setup=clean vms=vm1
avocado manu only=tutorial2..files

Assuming that line one and two will create two vms and then simply reuse
the first one which is a dependency for the given tutorial test. The
third line will then eliminate the existing setup for vm1 (and vm1
entirely). The final line would then still require vm1 although only vm2
is available. The setup for this test will start by bringing vm1 to the
state which is required for the tutorial test ignoring and not modifying
in any way the setup of vm2. If for instance the dependency of tutorial2
is ‘vm1_ready’ (defined as the parameter ‘get_state=vm1_ready’ in the
config for this subset), scanning for this state and its dependencies
will detect that all dependencies are missing, i.e. the vm1 doesn’t have
the state and doesn’t exist at all (also missing root state). The test
traversal would then look for the tests based on the state names since
simple setup is used. Since vm1 doesn’t exist, it will create it and
bring it to that state automatically, also determining the setup steps
automatically.

In the end with all but the minimum necessary vms and setup steps, the
tests will run. For this reason, it is important to point out that the
list of vms defined on the command line is used mainly for manual setup
steps but could also play the role of a restriction of the tests to
include in run steps and is otherwise automatically determined during
automatic setup and thus not needed if you don’t want to restrict tests
via vms they use. You can distinguish among manual and automated steps
by looking at test prefixes. The first contain “m” in their identifiers
while automated steps contain “a”. Cleanup tests contain “c” and are
also automated depending on the unset mode you use. Finally, “b” is used
for additional test variants based on multiple variants of the vms they
use and “d” is reserved for duplicate tests due to multiple variants of
test vms’ setup. If you include only one run the tests executed within
the run step will not contain any letters but if you include multiple
run steps, in order to guarantee we can distinguish among the tests,
they will contain “n” (with “t” for the terminal test nodes for each
test object vm’s image). The typical approach to do this test tagging is
compound and specifically in order of test discovery, i.e. 0m1n1a2
stands for the test which is the second automated setup of the test
which is the first test in a run step m1 and first run n1. These
prefixes are also used in all graphical descriptions of the Cartesian
graph and for resolving all test dependencies.

Note: The order of regular (run/main) tests is not always
guaranteed. Also, missing test numbers represent excluded tests due to
guest variant restrictions (some tests run only on some OS, hardware, or
vms in general).

More details regarding the configuration necessary for creating the
graph is available in the test development documentation but the
essential ones are the check, get, set, and unset routines with
additional parameters like

	**_state{_vms|_images}* - A vm or image state to perform the
routine on

	**_mode* - Behaviors in case of present/absent setup defined above

	**_opts* - Secondary options, important only within the
implementation

An only argument can have any number of “.”, “..”, and “,” in between
variant names where the first stands for immediately followed by, the
second for AND and the third for OR operations on test variants. Using
multiple only arguments is equivalent to using AND among the different
only values. In this sense,

avocado manu only=aaa only=bbb

is analogical to

avocado manu only=aaa..bbb

You can also use “no=aaa” to exclude variant “aaa” for which there is no
shortcut alternative, but you can also stack multiple no arguments
similarly to the multiple only arguments. The only and no
arguments together with the inline symbols above help run only a
selection of one or more tests. Most importantly

avocado manu [only=all|normal|minimal|...] only=TESTSUBVARIANT

is the same as using the only clause in the Cartesian configs.
Ultimately, all only parameters have the same effect but the “all”,
“normal”, “minimal” and other variants specified in the
main_restrictions base config parameter are treated in a special way
where they have an overridable default value. What this means is that
compared to all standard variants, we will only end up with just one
(default if not overrriden) variant (e.g. ‘only=normal’) and not a
Cartesian product of all of them. The following are examples of test
selections

avocado manu only=minimal only=quicktest
avocado manu only=normal only=tutorial1
avocado manu only=normal..tutorial2 only=names,files
avocado manu only=tutorial2..names,quicktest.tutorial2.files

For more details on the possible test subvariants once again check the
groups.cfg or sets.cfg config files, the first one of which
emphasizes on the current available test groups and the second on test
sets, i.e. selections of these groups.

Similarly to the test restrictions, you can restrict the variants of vms
that are defined in objects.cfg. The only difference is the way you
specify this, namely by using only_vmX instead of only where vmX is
the suffix of the vm that you want to restrict. The following are
examples of vm selection

avocado manu only_vm2=Win10
avocado manu only_vm1=CentOS only=tutorial1
avocado manu only_vm2=

If we allow for multiple hardware or software variants of vm2, the third
line would simply run all tests compatible with all vm2 variants.

Any other parameter used by the tests can also be given like an optional
argument. For example the parameter vms can be used to perform setup
only on a single virtual machine. Thus, if you want to perform a full vm
cleanup but you want to affect only virtual machine with the name ‘vm2’
you can simply type

avocado manu setup=clean vms=vm2

Note: Be careful with the vm parameter generator, i.e. if you want
to define some parameters for a single virtual machine which should not
be generated make sure to do so. Making any parameter specific is easy -
you only have to append a _vmname suffix to it, e.g. nic_vm2
identically to the vm restriction.

Test debugging

Whenever you run a single test and it fails, the vms will be left
running afterwards and completely accessible for any type of debugging.
The philosophy of this is that a vm state is cleaned up only when a new
test is run and needs the particular test object (vm). As a result, all
cleanups are removed and merged with all setups which is the only thing
we have to worry about throughout any test run or development. An
exception of this, i.e. a vm which is not left running could be either
if the vm is an ephemeral client or if it was forced to shut down by a
kill_vm parameter or when setting an image state (after automated
clean shutdown) in the scope of the given test being run. If more than
one test is being run and the error occurred at an early test, the vm’s
state can be saved as ‘last_error’ and can later on be accessed via

avocado manu setup=get get_state=last_error vms=vm1

for the vms that were involved in the test (e.g. vm1) but you have to
use a special set_state_on_error=last_error parameter as by default
we rather cancel saving the originally specified states via
set_state_on_error=.

If more than one tests failed, in order to avoid running out of space,
the state of the last error will be saved on top of the previous error.
This means that you will only be able to quickly debug the last
encountered error. A second limitation in the state debugging is that it
doesn’t support more complicated tests, i.e. tests with more complex
network topologies, hence also our choice of default above.

Note: There is a large set of dumped data, including logs, files of
importance for the particular tests, hardware info, etc. for every test
in the test results. If the test involves work with the vm’s GUI, some
backends also provide additional image logging (see backend
documentation for more info). You can make use of all these things in
addition to any possible states at the time of the error. Graphical
representation of the entire Cartesian graph of tests is also available
for each step of the test running and parsing and can be optionally
enabled for job-related debugging.

Unit testing

Even though a test suite usually has the sole purpose of testing
software, many of the tests make heavy use of utilities. The fact that
the code of such test utilities is reused so many times and for so many
tests might be a good motivation for testing these utilities separately
and developing their own unit tests. This is strongly advised for more
complex utilities.

Therefore, to run all available unit tests (for all utilities) use the
unit test tool or manual step

avocado manu setup=unittest

This will validate all utilities or at least the ones that are more
complex.

To run only a subset of the unit tests (or even just one), you can make
use of UNIX shell style pattern matching:

avocado manu setup=unittest ut_filter=*_helper_unittest.py

This will run only the unit tests that end with ’_helper_unittest.py’.

If you are developing your own unit test for a utility, you only need to
follow the guide about unit testing in python and put your own test
module next to the utility with the name <my-utility>_unittest.py
and it will be automatically discovered when you run the “unittest”
manual step.

Single node running

If you want to run a test without automated setup from a complete graph,
i.e. an internal (variant) test node, you can use the internal tool or
manual step

avocado manu setup=internal node=set_provider vms=vm1

This will run an internal test (used by the Cartesian graph for
automated setup) completely manually, i.e. without performing any
automated setup or requiring any present state as well as setting any
state. This implies that you can escape any automated setup/cleanup
steps but are responsible for any setup/cleanup that is required by the
test you are running (the test node). Use with care as this is mostly
used for manual and semi-manual tests. All variants in the configuration
can be parsed from the command line and the ones that are inaccessible
will not be traversed as described in:

https://github.com/intra2net/avocado-i2n/blob/master/doc/test_traversal_algorithm.pdf

What this means is that all nodes we typically parse with only leaves
will usually represent actual use cases of the product under QA
connected to a root traversal entry point through nonleaves and thus
ultimately traversed. The most standard set only normal is an even
smaller set of such nodes while the only all restriction will parse
the complete graph but traverse only the part reachable from the shared
root node skip the rest. Any internal tests that are not directly used
remain disconnected and as such will not be run. They are then typically
called only from (manual step) tools. Reading the graph from the config
is thus mostly WYSIWYG and does not require any extra knowledge of the
code parsing it.

How to develop

While some users might only run a test suite for their own product QA,
others are probably going to be writing tests to expand its coverage.
This document concentrates only on the running part and the developing
part is covered in multiple tutorials in the project wiki. Feel free to
check it out.

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 avocado_i2n

 		
 avocado_i2n package

 		
 Subpackages

 		
 avocado_i2n.cartgraph package

 		
 avocado_i2n.plugins package

 		
 avocado_i2n.states package

 		
 avocado_i2n.vmnet package

 		
 Submodules

 		
 avocado_i2n.cmd_parser module

 		
 avocado_i2n.intertest_setup module

 		
 avocado_i2n.loader module

 		
 avocado_i2n.params_parser module

 		
 avocado_i2n.runner module

 		
 Module contents

